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Abstract

We propose a dynamic growth model to mimic some social phenomena, such
as the evolution of cities’ population, in which monomer migrations occur
between any two aggregates and monomer birth/death can simultaneously
occur in each aggregate. Considering the fact that the rate kernels of
migration, birth and death processes may change with time, we assume that
the migration rate kernel is ijf (t), and the self-birth and death rate kernels
are ig1(t) and ig2(t), respectively. Based on the mean-field rate equation, we
obtain the exact solution of this model and then discuss semi-quantitatively
the scaling behaviour of the aggregate size distribution at large times. The
results show that in the long-time limit, (i) if

∫ t

0 g1(t
′) dt ′

/∫ t

0 g2(t
′) dt ′ � 1 or

exp
{∫ t

0 [g2(t
′) − g1(t

′)] dt ′
}/∫ t

0 f (t ′) dt ′ → 0, the aggregate size distribution
ak(t) can obey a generalized scaling form; (ii) if

∫ t

0 g1(t
′) dt ′

/∫ t

0 g2(t
′) dt ′ → 0

and exp
∫ t

0 [g2(t
′) − g1(t

′) dt ′
/∫ t

0 f (t ′) dt ′ → ∞, ak(t) can take a scale-free
form and decay exponentially in size k; (iii) ak(t) will satisfy a modified
scaling law in the remaining cases. Moreover, the total mass of aggregates
depends strongly on the net birth rate g1(t) − g2(t) and evolves exponentially
as exp

{∫ t

0 [g1(t
′) − g2(t

′)] dt ′
}
, which is in qualitative agreement with the

evolution of the total population of a country in real world.

PACS numbers: 82.20.−w, 05.40.−a, 68.43.Jk, 89.75.Da

1. Introduction

Aggregate growth is a common and important phenomenon in many fields of nature and
social science, such as physics, chemistry, biology and demography [1–4]. In the past
few decades, many investigations have been focused on the kinetics of various aggregation
processes. The general mechanisms arising in diverse fields of nature and social science include
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binary coalescence, migration, fragmentation, annihilation and so on [5–10]. Recently, much
attention has been devoted to aggregate growth driven by migration or exchange. For example,
Ispolatov, Krapivsky, and Redner introduced the migration mechanism to solve the problem
of wealth distribution in economical interactions [11], and Leyvraz and Redner proposed
a migration-driven aggregate growth model to mimic the evolution of city population [12].
In these models, aggregate growth takes place through the biased migration mechanism,

Ak + Al

K(k,l)−→ Ak−1 + Al+1 (k � l), where Ai denotes an aggregate (corresponding, a city
or agent) consisting of i monomers (e.g., individuals). That is, monomers prefer to transfer
from the small aggregate Ak to the large aggregate Al at the rate K(k, l). In recent decades,
the migration mechanism is extensively used to discover the kinetic behaviour of aggregate
growth. Ke and Lin further investigated the kinetics of a general unbiased migration-driven
aggregation system to show how the rate kernel K(k, l) ∝ klμ influences the aggregate size
distribution (μ is the migration rate kernel index, which reflects the activity of the aggregates
in emigration and immigration) [13]. The results showed that the aggregate size distribution
can approach different scaling forms for different values of μ. Moreover, Ben–Naim and
Krapivsky made a general study of exchange-driven growth with a generalized homogeneous
rate kernel [14]. These works exhibited that the migration- or exchange-driven aggregation
processes have much abundant kinetic behaviours.

Actually, we realize that monomer birth and death also play important roles in aggregate
growth processes (e.g., the evolution of city population). For example, an aggregate
(e.g., city) consisting of i individuals may grow into a large aggregate consisting of i + 1
individuals through monomer birth. Similarly, an aggregate can also be reduced to a small one
through monomer death processes. Such mechanisms can be described respectively by the

schemes, Ai

J1(i)−→ Ai+1 and Ai

J2(i)−→ Ai−1, where J1(i) and J2(i) are the self-birth and self-death
rate kernels which depend only on the size of the mother aggregate. Lin and Ke proposed a
migration-driven growth model with monomer birth and death to mimic the evolution of city
population and individual wealth more naturally, and they emphatically investigated how the
self-birth and self-death rate kernels decided the form which the aggregate size distribution
takes [15, 16]. The results showed that migration, self-birth and self-death processes are very
common in nature and should be introduced in some aggregate growth systems.

It should be pointed out that in the above-mentioned models all the rate kernels are
assumed to be independent of time. Moreover, in the literature, most of the research works on
aggregate growth have only paid attention to those time-independent rate kernels. However,
in some situations, the rate kernels of aggregation processes may have relation with time. For
example, in chemical reaction processes, the occurrence that two reactants coagulate into a
big one is usually dependent on the catalytic ability of the catalyst. And the catalytic ability
of the catalyst may not keep invariant for some factors such as ageing, which may cause
the coagulability of reactants decay or increase with time. Moreover, it is well known that
in a real society the migration and self-birth, and self-death processes of population may
be dependent on time actually. For instance, the unbalanced economic development among
cities, which varies continuously with time, can lead to a large-scale population migration
(e.g., more and more people migrate from a poor city to a rich one). Similarly, we realize
that when the city’s economy depresses, the migration rate of population may slow down.
On the other hand, the self-birth and self-death processes also influence the evolution of city
population. And the rates of self-birth and self-death can change with some factors, such as
fertility concept, the related policy of local government and the social medical care system.
In other words, the rate kernels of self-birth and self-death are both time dependent. Ke
and his co-workers investigated the reversible aggregation process with time-dependent rate
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kernels and obtained the asymptotic solution of the cluster size distribution [17]. Straube and
Falcke studied cluster–cluster aggregation and fragmentation with a periodically modulated
binding rate, and their result is relevant whenever clustering can be externally controlled [18].
These investigations showed that the kinetic behaviour of aggregate growth is also dependent
strongly on the concrete forms of the time-dependent rate kernels.

According to the above-mentioned reasons, we further investigate the migration model
with birth and death, in which all the reaction rate kernels are time dependent. The unbiased

migration process can be described as the reaction Ai + Aj

I (i,j ;t)−→ Ai−1 + Aj+1. Here, I (i, j ; t)

is the time-dependent migration rate kernel at which one monomer migrates from the aggregate
Ai to another aggregate Aj at time t. The processes of birth and death can be described by the

monomer reactions [15], Ai

J1(i;t)−→ Ai+1 and Ai

J2(i;t)−→ Ai−1, where J1(i; t) is the monomer birth
rate kernel and J2(i; t) the death rate kernel at time t. We believe that such an aggregate growth
model with time-dependent rate kernels can mimic some phenomena in biology and social
science, such as the evolution of city population and animal group, more accurately. Moreover,
it is also of theoretical interest to study the dependence of the kinetics on time-dependent rate
kernels.

The rest of this paper is organized as follows. In section 2, we investigate the analytic
solution of the model by means of the rate equation approach and then discuss the evolution
properties of the total mass, the total number and the aggregate size distribution. Finally, a
brief summary is given in section 3.

2. Analytic solution of reversible migration processes with birth and death

In this paper, the theoretical approach to the kinetics of reversible migration processes with
birth and death is based on the mean-field theory, which assumes that fluctuations in densities
of reactants are ignored and all aggregates are considered to be homogeneously distributed in
place throughout the processes. In the mean-field limit, we can use the Smoluchowski rate
equation to investigate the analytic solution of such a model. Let ak(t) be the concentration
of the aggregate Ak at time t. Based on [15, 16], we write the governing rate equation for our
system as follows:

d ak

dt
=

∞∑
j=1

I (k + 1, j ; t)ak+1aj +
∞∑

j=1

I (j, k − 1; t)ajak−1 −
∞∑

j=1

[I (k, j ; t) + I (j, k; t)]akaj

+ J1(k − 1; t)ak−1 − J1(k; t)ak + J2(k + 1; t)ak+1 − J2(k; t)ak. (1)

In equation (1), the first two terms account for the gain in ak(t) due to the migrations
Ak+1 + Aj → Ak + Aj+1 and Aj + Ak−1 → Aj−1 + Ak (j = 1, 2, . . .). The third and
fourth terms account for the loss in ak(t) due to the migration Ak + Aj → Ak−1 + Aj+1 and
its equiprobable process Aj + Ak → Aj−1 + Ak+1 (j = 1, 2, . . .). The fifth and sixth terms
represent the gain and loss in ak(t) caused by the self-birth processes Ak−1 → Ak (gain) and
Ak → Ak+1 (loss), respectively. The last two terms represent the gain and loss in ak(t) due to
the self-death processes Ak+1 → Ak (gain) and Ak → Ak−1 (loss), respectively.

In general, the rate kernels of migration, birth and death processes are not only related
to time but also dependent on the sizes of reactant aggregates. However, similar to the rate
equations for binary coagulation models [6–10], the governing rate equation (1) in this model
is also an infinite set of nonlinear differential equations. Thus, it is difficult to solve analytically
equation (1) in general cases with general rate kernels. Some useful mathematical techniques,
such as the application of scaling ansatz or Laplace transforms, have been employed to solve
such nonlinear rate equations (see, e.g., [8, 10–12]). In our previous works [19], we used
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the method of separation of variables to obtain the analytic solution of the rate equation
for an aggregation–fragmentation model with special rate kernels. In order to obtain the
analytic solution of equation (1) and then discuss the evolution properties of the aggregate size
distribution, we also focus on a simple case with special rate kernels in this work. We assume
that all monomers, individually or among aggregates, have the same characteristics including
physical properties and reaction activities. Thus, the migration rate kernel is symmetrical
and directly proportional to the size of the emigrating aggregate and that of the immigrating
aggregate, namely, I (i, j ; t) = ijf (t), where the time-dependent function f (t) describes the
probability of migration per monomer at time t. Meanwhile, both the self-birth and self-
death rate kernels are also time dependent and directly proportional to the size of the mother
aggregate, i.e., J1(i; t) = ig1(t) and J2(i; t) = ig2(t). Here, g1(t) denotes the probability of
a monomer producing a new one and g2(t) denotes the death probability of an old monomer
at time t. These rate kernels may be sound for identical particle systems and social systems
such as the population distribution of cities.

With these hypotheses equation (1) can be rewritten as

dak

dt
= [(k + 1)ak+1 + (k − 1)ak−1 − 2kak]M1f

+ [(k − 1)ak−1 − kak]g1 + [(k + 1)ak+1 − kak]g2 (2)

with the shorthand notation M1(t) = ∑∞
j=1 jaj (t). Obviously, M1(t) denotes the total mass

of the species at time t.
In this work, we consider a simple but important case in which there only exist monomer

aggregates at t = 0 and the initial concentration is equal to A0. Then the initial condition is

ak(0) = A0 δk1. (3)

Under the monodisperse initial condition, we can solve equation (2) with the help of the ansatz
(see, e.g., [19, 20])

ak(t) = A(t) [a(t)]k−1. (4)

Substituting the ansatz (4) into equation (2), we can derive the following differential equations:

da

dt
= (1 − a)2M1f + (1 − a)g1 + (a2 − a)g2 (5)

dA

dt
= 2A(a − 1)M1f − Ag1 + A(2a − 1)g2 (6)

with the corresponding initial condition

a(0) = 0 A(0) = A0. (7)

Then the problem reduces to determining the solutions of a(t) and A(t). It should be pointed
out that the mathematical technique employed above is a sort of the method of separation of
variables only under the condition 0 < a(t) < 1 for all t.

From equations (5) and (6) we can deduce

d ln M1

dt
= 2

1 − a

da

dt
+

1

A

dA

dt
= g1 − g2. (8)

The exact expression of the total mass of aggregates can then be derived,

M1(t) = A0 exp

[∫ t

0
[g1(t

′) − g2(t
′)] dt ′

]
. (9)
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Substituting equation (9) into equation (5), we can easily deduce the following equation:

d

dt

(
1

1 − a

)
+ [g2(t) − g1(t)]

1

1 − a
= g2(t) + A0f (t) exp

[∫ t

0
[g1(t

′) − g2(t
′)] dt ′

]
. (10)

Equation (10) is a linear equation, which can be straightforwardly solved to yield

a(t) = 1 − exp{[ḡ2(t) − ḡ1(t)]t}∫ t

0 g2(t ′) exp{[ḡ2(t ′) − ḡ1(t ′)]t ′} dt ′ + A0f̄ (t)t + 1
(11)

where

f̄ (t) = 1

t

∫ t

0
f (t ′) dt ′ ḡ1(t) = 1

t

∫ t

0
g1(t

′) dt ′ ḡ2(t) = 1

t

∫ t

0
g2(t

′) dt ′. (12)

Here, f̄ (t) denotes the average probability of migration per monomer in the time range of 0 to
t, and ḡ1(t) and ḡ2(t) denote the average probability of monomer birth and that of monomer
death, respectively. Correspondingly, in the time range of 0 to t, the average migration rate
kernel is Ī (i, j ; t) = f̄ (t)ij , while the average birth and death rate kernels are J̄1(i; t) = iḡ1(t)

and J̄2(i; t) = iḡ2(t), respectively.
By using the expression of the total mass, we readily deduce

A(t) = M1(t)[1 − a(t)]2. (13)

Thus we obtain the exact solution of the aggregate size distribution for arbitrary f (t), g1(t)

and g2(t),

ak(t) = A0 exp{[ḡ2(t) − ḡ1(t)]t}{ ∫ t

0 g2(t ′) exp{[ḡ2(t ′) − ḡ1(t ′)]t ′} dt ′ + A0f̄ (t)t + 1
}2

×
{

1 − exp{[ḡ2(t) − ḡ1(t)]t}∫ t

0 g2(t ′) exp{[ḡ2(t ′) − ḡ1(t ′)]t ′} dt ′ + A0f̄ (t)t + 1

}k−1

. (14)

It is also important to determine the total number of aggregates,

M0(t) =
∞∑

j=1

aj (t) = A(t)

1 − a(t)

= A0∫ t

0 g2(t ′) exp{[ḡ2(t ′) − ḡ1(t ′)]t ′} dt ′ + A0f̄ (t)t + 1
. (15)

When the time functions f (t), g1(t) and g2(t) are given, one can readily understand
the evolution behaviour of the aggregate size distribution by analysing equation (14). In
the following subsections, we will semi-quantitatively discuss the scaling properties of the
aggregate size distribution at large times. Here we focus on fairly real cases such as the
evolution of city population. It is well known that the social economy can affect the social
activities to a certain extent. For example, with fast economic development, the public
transportation is getting more and more convenient, and accordingly, this situation makes
population migration more frequent. We define f (t) in the migration kernel is a positive and
increasing function, or at least asymptotically so at large times, namely, ḟ (t) � 0 (t � 1).
Moreover, with the effect of people’s fertility concept the self-birth rate may change with time,
and recently it decreases with time especially in developed countries. On the other hand, with
the help of the social medical care system the self-death rate may also decrease with time.
Thus, g1(t) and g2(t) may be positive and decreasing functions. Assume that ġ1(t) � 0 and
ġ2(t) � 0 at t � 1. We then investigate analytically the kinetic behaviour of such a relatively
real system in the following cases.
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2.1. The case with ḡ1(t)/ḡ2(t) → ∞ at t → ∞
Firstly, we investigate the limt→∞ ḡ1(t)/ḡ2(t) → ∞ case. In the long-time limit, the value of
ḡ2(t) can be ignored comparing to that of ḡ1(t). For this case, the total mass of the species
increases with time and the species thus survives finally. Moreover, the total mass will diverge
if the average birth rate decreases less rapidly than t−1.

From equation (14) we deduce the asymptotic solution of ak(t) at large times,

ak(t) � A−1
0 t−2[f̄ (t)]−2 exp[−t ḡ1(t)]

{
1 − A−1

0 t−1[f̄ (t)]−1 exp[−t ḡ1(t)]
}k−1

. (16)

In the region of t � 1 and k � 1, equation (16) can further be rewritten as

ak(t) � A−1
0 t−2[f̄ (t)]−2 exp[−t ḡ1(t)] exp

[
− k

A 0t f̄ (t) exp[t ḡ1(t)]

]
. (17)

Obviously, equation (17) satisfies the generalized scaling form (see, e.g., [17, 19, 20])

ak(t) � [α(t)]−1�

[
k

S(t)

]
S(t) ∝ β(t) (18)

where α(t) and β(t) are increasing functions of time and S(t) denotes the typical aggregate
size of the system, which plays a role analogous to the correlation length in critical phenomena.
For this case, the scaling function is exponential, namely, �(x) = exp(−x), and the typical
size S(t) grows as A0t f̄ (t) exp[t ḡ1(t)] in the long-time limit.

Moreover, from equation (15) we can obtain the asymptotic solution of M0(t) as follows:

M0(t) � t−1[f̄ (t)]−1. (19)

Equation (19) indicates that the evolution behaviour of the total number depends crucially
on the migration rate kernel. The total number decreases with time in the long-time limit
and decays to zero finally. On the other hand, summing up equation (2), we can deduce
Ṁ0(t) = −[M1(t)f (t) + g2(t)]a1(t). In this case, M1(t)f (t) � g2(t) at t � 1 and
the evolution behaviour of the total number is indeed controlled by migration processes
of aggregates.

2.2. The case with ḡ1(t)/ḡ2(t) → const > 0 at t → ∞
We then discuss the case in which ḡ1(t)/ḡ2(t) → C1 (C1 is a constant greater than zero) at
t � 1. In this case, both the self-birth and self-death processes cannot be ignored, and we
find that the solution of ak(t) depends strongly on the value of C1.

2.2.1. The C1 � 1 subcase. We can conclude from equation (9) that the total mass increases
with time for C1 > 1 and remains at a constant value for C1 = 1. Thus, the species can
survive at the end. Moreover, in the C1 > 1 subcase the total mass of the species will diverge
if the average birth rate decreases less rapidly than t−1.

On the other hand, from equation (14) one can determine the asymptotic solution of ak(t)

at large times as follows:

ak(t) � A−1
0 t−2 exp[(1 − C1)t ḡ2(t)][f̄ (t)]−2 exp

{
− k

A 0t f̄ (t) exp[(C1 − 1)t ḡ2(t)]

}
. (20)

Obviously, the aggregate size distribution also approaches the generalized scaling form of
equation (18), and the typical aggregate size is S(t) � A0t f̄ (t) exp[(C1−1)t ḡ2(t)]. Moreover,
we can also determine the total number of aggregates for this subcase. It is found that at large
times, the asymptotic solution of the total number is the same as equation (19). It is not
surprising because M1(t)f (t) � g2(t) (t � 1) is also held for this subcase.

6



J. Phys. A: Math. Theor. 41 (2008) 505004 S-Q Zhu et al

2.2.2. The C1 < 1 subcase. In this subcase, the total mass of aggregates always decreases
with time and the species survives finally only if the average death rate decays faster than
t−1. Moreover, from equation (14) we find that the aggregate size distribution is dependent
strongly on the relation between exp[(1 − C1)t ḡ2(t)] and t f̄ (t) at large times.

When limt→∞ exp[(1 − C1)t ḡ2(t)]/tf̄ (t) → ∞, we obtain the asymptotic solution of
the aggregate size distribution,

ak(t) � A0(1 − C1)
2 exp[(1 − C1)t ḡ2(t)]

{exp[(1 − C1)t ḡ2(t)] + A0(1 − C1)t f̄ (t)}2
Ck

1

{
1 +

A0(1 − C1)
2t f̄ (t)

C1 exp[(1 − C1)t ḡ2(t)]

}k−1

.

(21)

In the region of t � 1 and k � 1, equation (21) can be asymptotically rewritten as

ak(t) � A0(1 − C1)
2 exp[(C1 − 1)t ḡ2(t)]C

k
1 exp

[
k

S(t)

]
(22)

where

S(t) = C1 exp[(1 − C1)t ḡ2(t)]

A0(1 − C1)2t f̄ (t)
. (23)

Equation (22) indicates that the aggregate size distribution in this subcase does not satisfy the
generalized scaling form, but it satisfies the modified scaling form [19, 20]

ak(t) � λk[α(t)]−1�

[
k

S(t)

]
S(t) ∝ β(t) (24)

where λ is a constant (0 < λ < 1). The modified scaling form (24) indicates that
there are two different scales associated with the aggregate size distribution. One is
the growing scale S(t) = A−1

0 C1(1 − C1)
−2t−1[f̄ (t)]−1 exp[(1 − C1)t ḡ2(t)], which is

forced by the migration, birth and death processes. Another is a time-independent scale,
S = limt→∞

∑∞
k=1 k2ak(t)

/∑∞
k=1 kak(t) � (1 + λ)/(1 − λ) = (1 + C1)/(1 − C1), which

will dominate the evolution behaviour of the aggregate size distribution in the long-time limit.
Moreover, the scaling function in equation (24) is exponential, namely, �(x) = exp(x).

In addition, we can determine the total number at large times,

M0(t) � A0(1 − C1){exp[(1 − C1)t ḡ2(t)] + A0(1 − C1)t f̄ (t)}−1. (25)

Obviously, the total number decreases with time and tends to zero finally. Moreover, since
exp[(C1 − 1)t ḡ2(t)] → 0 at t → ∞, it follows from equation (22) that all aggregates in the
system will vanish at the end.

When limt→∞ exp[(1−C1)t ḡ2(t)]/tf̄ (t) → C2 (C2 is a positive constant), the aggregate
size distribution can be determined as follows:

ak(t) � A0
C2(1 − C1)

2

[C2 + A0(1 − C1)]2
[t f̄ (t)]−1Ck

3 exp

[
k

C4t f̄ (t)

]
(26)

where C3 = [C1C2 + A0(1 − C1)][C2 + A0(1 − C1)]−1 and C4 = [C2 + A0(1 − C1)][C1C2 +
A0(1 − C1)]C

−1
2 (1 − C1)

−2. Obviously, C3 < 1. Thus, the aggregate size distribution in this
subcase also approaches the modified scaling form (24) with the growing scale S(t) � C4t f̄ (t)

and the time-independent scale S � (1 + C3)/(1 − C3).
When limt→∞ exp[(1 − C1)t ḡ2(t)]/tf̄ (t) → 0, from equation (14) we can deduce that

for this subcase the aggregate size distribution also takes the form of equation (20).
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Table 1. A summary of the scaling properties of ak(t) in different cases.

Case Summary of the results

ḡ1(t)/ḡ2(t) → ∞ (i) The aggregate size distribution satisfies the generalized scaling form (18).
ḡ1(t)/ḡ2(t) → C1 (C1 � 1) (i) The aggregate size distribution satisfies the generalized scaling form (18).
ḡ1(t)/ḡ2(t) → C1(C1 < 1) (i) If limt→∞ exp[(1−C1)t ḡ2(t)]/tf̄ (t) tends to a positive finite value, the aggregate

size distribution approaches the modified scaling form (24);
(ii) if limt→∞ exp[(1−C1)t ḡ2(t)]/tf̄ (t) → 0, the aggregate size distribution satisfies
the generalized scaling form (18).

ḡ1(t)/ḡ2(t) → 0 (i) If exp[t ḡ2(t)]/ξ(t) → ∞, the aggregate size distribution takes a scale-free form;
(ii) if exp[t ḡ2(t)]/ξ(t) → C5, the aggregate size distribution obeys the modified
scaling form (24);
(iii) if exp[t ḡ2(t)]/ξ(t) → 0, the aggregate size distribution satisfies the generalized
scaling form (18).

2.3. The case with ḡ1(t)/ḡ2(t) → 0 at t → ∞
We then discuss the case in which the average death rate is much larger than the corresponding
average self-birth rate (namely, the self-death process dominates the system). The total mass
in this case decreases exponentially as exp[−t ḡ2(t)] and the species survives finally only if
the average death rate ḡ2(t) decays faster than t−1.

In this case, the analytic solution of ak(t) is dependent strongly on the value of
limt→∞ exp[t ḡ2(t)]/ξ(t) at t → ∞, where ξ(t) = ∫ t

0 g1(t
′) exp{[ḡ2(t

′) − ḡ1(t
′)]t ′} dt ′ +

A0t f̄ (t). We then analyse the scaling properties of the aggregate size distribution in several
subcases as follows.

2.3.1. The subcase of limt→∞ exp[t ḡ2(t)]/ξ(t) → ∞. In this subcase, we obtain the
asymptotic solution of the aggregate size distribution at large times,

ak(t) � A0[ξ(t)]−1{ξ(t) exp[−t ḡ2(t)]}k. (27)

Equation (27) shows that the aggregate size distribution takes a scale-free form and decays
exponentially in size k. Moreover, we obtain the total number as follows:

M0(t) � A0 exp[−t ḡ2(t)]. (28)

Obviously, both the total mass and the total number decay to zero with time, and thus all
aggregates will vanish at the end.

2.3.2. The subcase of limt→∞ exp [t ḡ2(t)]/ξ(t) → const > 0. We then discuss the subcase
in which limt→∞ exp[t ḡ2(t)]/ξ(t) → C5 (C5 is a finite constant). We introduce

ξ(t) = exp[t ḡ2(t)]

C5
+ τ(t) (29)

where τ(t) is a time-dependent function and tends to zero at large times. Substituting
equation (29) into equation (14) and considering the condition ḡ1(t)/ḡ2(t) → 0 at t � 1, we
determine the asymptotic solution of ak(t) at large times,

ak(t) � A0C
2
5(C5 + 1)−k−2 exp[−t ḡ2(t)] exp

[
k

S(t)

]
(30)

with

S(t) � (C5 + 1) exp[t ḡ2(t)]

C2
5τ(t)

. (31)
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Equation (30) indicates that the aggregate size distribution approaches the modified scaling
form of equation (24). Meanwhile, we determine the total number of aggregates,

M0(t) � A0
C5

C5 + 1
exp[−t ḡ2(t)]. (32)

Moreover, since exp[−t ḡ2(t)] → 0 at t � 0, the aggregate size distribution consistently
decays with time and decreases to zero finally. Hence, all aggregates will vanish at the end.

2.3.3. The subcase of limt→∞ exp[t ḡ2(t)]/ξ(t) → 0. In this subcase, one can derive the
scaling solution of the aggregate size distribution,

ak(t) � A0 exp[t ḡ2(t)][ξ(t)]−2 exp

[
− k

S(t)

]
(33)

with the typical size

S(t) � ξ(t) exp[−t ḡ2(t)]. (34)

The result shows that for this subcase, the aggregate size distribution obeys the generalized
scaling form (18). Furthermore, we determined the total number of the aggregates in the
long-time limit,

M0(t) � A0[ξ(t)]−1. (35)

Obviously, when time is large, the total number of the aggregates will tend to zero. Moreover,
equation (33) indicates that ak(t) decays with time and vanishes at the end. Thus, all aggregates
cannot survive finally.

3. Summary

In this work, we have studied a solvable kinetic model of aggregate growth, in which monomers
can spontaneously migrate from one aggregate to another; meanwhile, monomer birth and
death processes may occur in any aggregates. Considering the rates of migration, self-
birth and self-death processes may be time dependent, we assume the migration rate kernel
I (i, j ; t) = ijf (t), the self-birth kernel J1(i; t) = ig1(t) and the self-death rate kernel
J2(i; t) = ig2(t). Based on the mean-field rate equation, we investigated the analytic solution
of the aggregate size distribution and then analysed the kinetic scaling properties of the system.

Consider a relatively realistic case (e.g., the evolution of city population), in which f (t) is
an increasing function, and g1(t) and g2(t) are both decreasing functions. The results showed
that the kinetic behaviour of the aggregate size distribution ak(t) depends crucially on the
relation between g1(t) and g2(t). Moreover, the migration rate kernel also plays an important
role in the evolution of ak(t). In the long-time limit, the aggregate size distribution can take
the generalized or modified scaling form in some cases while it has a scale-free form in other
cases, which is illustrated in table 1. When f (t), g1(t) and g2(t) all tend to finite constants at
large times, our results can asymptotically reduce to those obtained in the same model but with
time-independent rate kernels [15, 16]. More intriguingly, in the case of birth rate less than
death rate, the aggregate size distribution in the time-dependent-rate-kernel system can satisfy
the generalized or modified scaling form (see table 1), while it always satisfies the modified
scaling form in the system with time-independent rate kernels [16]. This indicates that besides
the size dependence of the rate kernels, the time dependence also plays an important role in
the scaling properties of the aggregate size distribution.

Moreover, the total mass in the system also has abundant evolution behaviours. When
ḡ1(t)/ḡ2(t) tends to infinity or a constant greater than 1 at large times, the total mass increases

9
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with time and the aggregates can survive. When ḡ1(t)/ḡ2(t) is strictly equal to 1, the total mass
of the system is formally conserved and remains at the initial value A0. When ḡ1(t)/ḡ2(t)

tends to a constant less than 1, the total mass decreases with time. Additionally, the total
number always decreases with time for all cases.
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